Spaces of commuting elements in the classical groups
نویسندگان
چکیده
Let G be the classical group, and let Hom ( Z m , ) denote space of commuting -tuples in . First, we refine formula for Poincaré series due to Ramras Stafa by assigning (signed) integer partitions permutations. Using refined formula, determine top term series, apply it prove dependence topology on parity rational hyperbolicity ? 2 Next, give a minimal generating set cohomology low dimensions. We these results homological stability with best possible stable range. Baird proved that is identified certain ring invariants Weyl group our approach direct calculation this invariants.
منابع مشابه
On Spaces of Commuting Elements in Lie Groups
The purpose of this paper is to introduce a new method of “stabilizing” spaces of homomorphisms Hom(π,G) where π is a certain choice of finitely generated group and G is a compact Lie group. The main results apply to the space of all ordered n-tuples of pairwise commuting elements in a compact Lie group G, denoted Hom(Zn, G), by assembling these spaces into a single space for all n ≥ 0. The res...
متن کاملcommuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولPairwise non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups
Let $G$ be a finite group. A subset $X$ of $G$ is a set of pairwise non-commuting elements if any two distinct elements of $X$ do not commute. In this paper we determine the maximum size of these subsets in any finite non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup.
متن کاملCommuting Elements and Spaces of Homomorphisms
Abstract. This article records basic topological, as well as homological properties of the space of homomorphisms Hom(π,G) where π is a finitely generated discrete group, and G is a Lie group, possibly non-compact. If π is a free abelian group of rank equal to n, then Hom(π,G) is the space of ordered n–tuples of commuting elements in G. If G = SU(2), a complete calculation of the cohomology of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2021
ISSN: ['1857-8365', '1857-8438']
DOI: https://doi.org/10.1016/j.aim.2021.107809